A continuation theory for weakly inward maps

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fixed Point Theory for Weakly Inward Kakutani Maps: the Projective Limit Approach

New fixed point results are presented for weakly inward Kakutani condensing maps defined on a Fréchet space E. The proofs rely on the notion of an essential map and viewing E as the projective limit of a sequence of Banach spaces.

متن کامل

Some results on weakly contractive maps

In this paper direct proofs of some common fixed point results for two and three mappings under weak contractive conditions are given. Some of these results are improved by using different arguments of control functions. Examples are presented showing that some generalizations cannot be obtained and also that our results are distinct from the existing ones.

متن کامل

A RESULT ON FIXED POINTS FOR WEAKLY QUASI-CONTRACTION MAPS IN METRIC SPACES

In this paper, we give a new fixed point theorem forWeakly quasi-contraction maps in metric spaces. Our results extend and improve some fixed point and theorems in literature.    

متن کامل

A COMMON FIXED POINT THEOREM FOR $psi$-WEAKLY COMMUTING MAPS IN L-FUZZY METRIC SPACES

In this paper, a common fixed point theorem for $psi$-weakly commuting maps in L-fuzzy metric spaces is proved.

متن کامل

Positive Solutions of Some Three-point Boundary Value Problems via Fixed Point Index for Weakly Inward A-proper Maps

in which the second derivative may occur nonlinearly. Positive solutions for the case f (t,u,u′,u′′) = g(t)h(u) have been studied by Ma [15] and Webb [20, 21], when f (t,u,u′,u′′) = h(t,u) by He and Ge [5] and also by Lan [11]. The case f (t,u,u′,u′′) = g(t)h(u,u′) has been studied by Feng [4]. The results in [4, 15] are obtained by means of Krasnosel’skiı̆’s theorem [8], the ones in [5] use Leg...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Glasgow Mathematical Journal

سال: 1998

ISSN: 0017-0895,1469-509X

DOI: 10.1017/s0017089500032663